a) \(y' = 6x - {1 \over x} + 4cosx\).
b) \(y'= \dfrac{\left ( x^{2}+x+ 1 \right )^{'}}{\left ( x^{2}+ x+ 1 \right ).ln10}\) = \(\dfrac{2x+ 1}{\left ( x^{2}+ x+ 1 \right ).ln10}\).
c) \(y'= \dfrac{\left ( \log_{3}x^{} \right )^{'}.x- \log_{3}x.1}{x^{2}}\) = \(\dfrac{\dfrac{1}{x. \ln 3}.x-\log_{3}x}{x^{2}}\) \(=\dfrac{1-\ln 3.\log_{3}x}{x^{2}.\ln 3}\) \( = \dfrac{{1 - \ln 3.\dfrac{{\ln x}}{{\ln 3}}}}{{{x^2}\ln 3}}\) \(= \dfrac{1-\ln x}{x^{2}. \ln 3}\).