Ta có: \(MN\) là đường trung bình của tam giác \(ABC \Rightarrow MN // BC\).
\(\left\{ \begin{array}{l}\left( {BCD} \right) \supset BC\\\left( {MNE} \right) \supset MN\\MN//BC\\E \in \left( {MNE} \right) \cap \left( {BCD} \right)\end{array} \right. \)
\(\Rightarrow \) giao tuyến của hai mặt phẳng \((MNE)\) và \((BCD)\) là đường thẳng qua \(E\) và song song với \(BC\). Đường thẳng này cắt \(BD\) tại \(F\). Ta có \(MN//EF//BC\).
Ta có \(MN = \frac{1}{2}BC\).
Áp dụng định lí Ta-let trong tam giác \(BCD\) ta có: \(\frac{{EF}}{{BC}} = \frac{{DE}}{{DC}} = \frac{3}{4} \Rightarrow EF = \frac{3}{4}BC \Rightarrow MN \ne EF\).
Vậy \(MNEF\) là hình thang.
Chọn đáp án D.