Bài 51 trang 166 SBT toán 8 tập 1

Cho tam giác \(ABC\) với ba đường cao \(AA’,\, BB’,\ CC’.\) Gọi \(H\) là trực tâm của tam giác đó.Chứng minh rằng: \(\eqalign{{HA'} \over {AA'}} + \eqalign{{HB'} \over {BB'}} +\eqalign {{HC'} \over {CC'}} = 1\)

Lời giải

\(\eqalign{  & {S_{HBC}} + {S_{HAC}} + {S_{HAB}} = {S_{ABC}}  \cr  &  \Rightarrow {{{S_{HBC}}} \over {{S_{ABC}}}} + {{{S_{HABC}}} \over {{S_{ABC}}}} + {{{S_{HAB}}} \over {{S_{ABC}}}} = 1 \cr} \)

\(\Rightarrow\eqalign{{HA'.BC} \over {AA'.BC}} +\eqalign {{HB'.AC} \over {BB'.AC}} \) \(+ \eqalign{{HC'.AB} \over {CC'.AB}} = 1\)

\( \Rightarrow \eqalign{{HA'} \over {AA'}} + \eqalign{{HB'} \over {BB'}} +\eqalign{{HC'} \over {CC'}} = 1\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”