Giải :\(\eqalign{
& g'\left( x \right) = \cos x - 2a\cos 2x - \cos 3x + 2a \cr
& {\rm{ }} = 4a{\sin ^2}x + 2\sin x\sin 2x \cr
& {\rm{ }} = 4a{\sin ^2}x + 4{\sin ^2}x\cos x \cr
& {\rm{ }} = 4{\sin ^2}x\left( {a + \cos x} \right). \cr} \)Rõ ràng với a > 1 thì \(a + \cos x > 0\) và \({\sin ^2}x \ge 0\) với mọi \(x \in R\) nên với a > 1 thì \(g'\left( x \right) \ge 0,\forall x \in R.\)