Bài 52 trang 144 SBT toán 7 tập 1

Đề bài

Cho hình 56, trong đó \(AB // HK, AH // BK.\) Chứng minh rằng \(AB = HK, AH = BK.\)

Lời giải

Nối \(AK\).

Vì \(AB // HK \) (gt)

\( \Rightarrow \widehat {{A_1}} = \widehat {{K_1}}\) (hai góc so le trong)

Vì \(AH // BK\) (gt)

\( \Rightarrow \widehat {{A_2}} = \widehat {{K_2}}\) (hai góc so le trong)

Xét \(∆ABK\) và \(∆KHA\), ta có:

\(\widehat {{A_1}} = \widehat {{K_1}}\) (chứng minh trên)

\(AK\) cạnh chung

\(\widehat {{A_2}} = \widehat {{K_2}}\) (chứng minh trên)

\( \Rightarrow ∆ABK =  ∆KHA\) (g.c.g)

\( \Rightarrow AB = KH, BK = AH\) (các cạnh tương ứng).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”