Bài 53 trang 102 SGK Toán 7 tập 1

Đề bài

Cho định lí: " Nếu hai đường thẳng \(xx', yy'\) cắt nhau tại \(O\) góc \(xOy\) vuông thì các góc \(yOx', x'Oy', y'Ox\) đều là góc vuông".

a) Hãy vẽ hình.

b) Viết giả thiết và kết luận định lí.

c) Điền vào chỗ trống (...) trong các câu sau:

 1) \(\widehat{xOy} + \widehat{x'Oy} = {180^o}\)    (Vì ...).

 2) \({90^o}+\widehat{x'Oy} = {180^o}\)    (theo giả thiết và căn cứ vào ...).

 3) \(\widehat{x'Oy}={90^o}\)      (căn cứ vào ...).

 4) \(\widehat{x'Oy'}              =  \widehat{xOy}\)  (Vì ...).

 5) \(\widehat{x'Oy'}={90^o}\)        (căn cứ vào).

 6) \(\widehat{y'Ox}                = \widehat{x'Oy}\)  (vì ...).

 7) \(\widehat{y'Ox}={90^o}\)      (căn cứ vào ...).

d) Hãy trình bày lại chứng minh một cách ngắn gọn hơn.

Lời giải

a) Vẽ 

b)

c) 

 1) \(\widehat{xOy} + \widehat{x'Oy} = {180^o}\)    (vì là hai góc kề bù).

 2) \({90^o}+\widehat{x'Oy} = {180^o}\)     (theo giả thiết và căn cứ vào 1).

 3) \(\widehat{x'Oy}={90^o}\)      (căn cứ vào 2).

 4) \(\widehat{x'Oy'}               =  \widehat{xOy}\)  (vì là hai góc đối đỉnh).

 5) \(\widehat{x'Oy'}={90^o}\)      (căn cứ vào 4 và giả thiết).

 6) \(\widehat{y'Ox}              = \widehat{x'Oy}\)  (vì là hai góc đối đỉnh).

 7) \(\widehat{y'Ox}={90^o}\)         (căn cứ vào 6 và 3).

d) Trình bày lại cách chứng minh một cách gọn hơn.

Ta có: \(\widehat{xOy} + \widehat{x'Oy}=180^o\) (hai góc kề bù)

Mà \(\widehat{xOy}={90^o}\) (gt) nên \({90^o}+\widehat{x'Oy}={180^o}\)

\( \Rightarrow \widehat{x'Oy}=180^o-90^o={90^o}\) 

\(\widehat{x'Oy}  =  \widehat{xOy'}\)  (hai góc đối đỉnh).

\( \Rightarrow \widehat{y'Ox}={90^o}\)

\(\widehat{x'Oy'}               =  \widehat{xOy}\)  (hai góc đối đỉnh).

\( \Rightarrow \widehat{x'Oy'}={90^o}\)