Phân tích: Giả sử hình thang \(ABCD\) dựng được thỏa mãn điều kiện bài toán. Tam giác \(ADH\) dựng được vì biết hai cạnh góc vuông \(AH = 2cm\) và \(HD = 1cm,\) \(\widehat H = {90^0}\). Vì đáy \(AB < CD\) nên \(\widehat D < {90^0}\). Điểm \(H\) nằm giữa \(D\) và \(C\).
Điểm \(C\) nằm trên tia đối tia \(HD\) và cách \(H\) một khoảng bằng \(3cm\)
Điểm \(B\) thỏa mãn hai điều kiện:
- \(B\) nằm trên đường thẳng đi qua \(A\) và song song với \(DH.\)
- \(B\) cách \(A\) một khoảng bằng \(2cm\)
Cách dựng:
- Dựng \(∆ AHD\) biết \(\widehat H = 90^0,\) \(AH =2cm,\) \(HD = 1cm\)
- Dựng tia đối tia \(HD\)
- Dựng điểm \(C\) sao cho \(HC = 3cm\)
- Dựng tia \(Ax // DH,\) \(Ax\) nằm trên nửa mặt phẳng bờ \(AD\) chứa điểm \(H\)
- Dựng điểm \(B\) sao cho \(AB = 2cm.\) Nối \(CB\) ta có hình thang \(ABCD\) cần dựng.
Chứng minh:
Tứ giác \(ABCD\) là hình thang vì \(AB // CD\)
Kẻ \(BK ⊥ CD.\) Tứ giác \(ABKH\) là hình thang có hai cạnh bên song song
Nên : \(BK = AH\) và \(KH = AB\)
Suy ra: \(KC = HC – KH = HC – AB\)\( = 3− 2 = 1 \;\;(cm)\)
Suy ra: \(∆ AHD = ∆ BKC \;\;(c.g.c) \) \(\Rightarrow \widehat D = \widehat C\)
Vậy hình thang \(ABCD\) là hình thang cân.
Hình thang cân \(ABCD\) có: \(AH = 2cm,\) đáy \(AB = 2cm,\) đáy \(CD = 4cm\)
Thỏa mãn điều kiện bài toán.
Biện luận: Tam giác \(AHD\) luôn dựng được nên hình thang \(ABCD\) luôn dựng được. Ta luôn dựng được một hình thang thỏa mãn điều kiện bài toán.