Bài 55 trang 98 SBT toán 8 tập 2

Đề bài

Tam giác \(ABC\) có ba đường cao \(AD, BE, CF\) đồng quy tại \( H.\) Chứng minh rằng \(AH.DH = BH.EH = CH.FH\). 

Lời giải

Xét \(∆ AFH\) và \(∆ CDH\) có:

+) \(\widehat {AFH} = \widehat {CDH} = 90^\circ \)

+) \(\widehat {AHF} = \widehat {CHD}\) (đối đỉnh)

\( \Rightarrow  ∆ AFH\) đồng dạng \(∆ CDH \) (g.g)

\( \Rightarrow\displaystyle {{AH} \over {CH}} = {{FH} \over {DH}}\)

\( \Rightarrow AH.DH = CH.FH\)                   (1)

Xét \(∆ AEH\) và \(∆ BDH\) có:

\(\widehat {AEH} = \widehat {BDH} = 90^\circ \)

\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

\( \Rightarrow ∆ AEH\) đồng dạng \(∆ BDH\) (g.g)

\( \Rightarrow\displaystyle{{AH} \over {BH}} = {{EH} \over {DH}}\)

\( \Rightarrow AH.DH = BH.EH\)                   (2)

Từ (1) và (2) suy ra: \(AH.DH = BH.EH = CH.FH\) (đpcm).