a) \(x^2+ \dfrac{1}{2}x+ \dfrac{1}{16}\) tại \(x = 49,75\)
Ta có: \(x^2+ \dfrac{1}{2}x+ \dfrac{1}{16} \)
\(= x^2+ 2 . x . \dfrac{1}{4} + \left ( \dfrac{1}{4} \right )^{2}\)
\(= \left ( x + \dfrac{1}{4} \right )^{2}\)
Với \(x = 49,75\) ta có: \(\left ( 49,75 + \dfrac{1}{4} \right )^{2}= (49,75 + 0,25)^2\)\(= 50^2= 2500\)
b) \(x^2- y^2- 2y - 1\) tại \(x = 93\) và \(y = 6\)
Ta có: \({x^2}-{\rm{ }}{y^2}-{\rm{ }}2y{\rm{ }}-{\rm{ }}1{\rm{ }} \)
\(={x^2}+(-{\rm{ }}{y^2}-{\rm{ }}2y{\rm{ }}-{\rm{ }}1{\rm{ }} )\)
\(= {\rm{ }}{x^2}-{\rm{ }}({y^2} + {\rm{ }}2y{\rm{ }} + {\rm{ }}1)\)
\(= {\rm{ }}{x^2} - {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\)
\( = \left[ {x - \left( {y + 1} \right)} \right].\left[ {x + \left( {y + 1} \right)} \right]\)
\(= {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}1} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right)\)
Với \(x = 93, y = 6\) ta được:
\((93 - 6 - 1)(93 + 6 + 1) = 86 . 100 \)\(= 8600 \)