a) \(f(x) = - 15{{\rm{x}}^3} + 5{{\rm{x}}^4} - 4{{\rm{x}}^2} + 8{{\rm{x}}^2} \)\(- 9{{\rm{x}}^3} - {x^4} + 15 - 7{{\rm{x}}^3}\)
\( = \left( {5{{\rm{x}}^4} - {x^4}} \right) - (15{{\rm{x}}^3} + 9{{\rm{x}}^3} \)\(+ 7{{\rm{x}}^3}) + ( - 4{{\rm{x}}^2} + 8{{\rm{x}}^2}) + 15 \)
\( = 4{{\rm{x}}^4} - 31{{\rm{x}}^3} + 4{{\rm{x}}^2} + 15 \)
Vậy \(f(x) = 4{{\rm{x}}^4} - 31{{\rm{x}}^3} + 4{{\rm{x}}^2} + 15 \)
b) Thay \(x=1\) vào \(f(x) = 4{{\rm{x}}^4} - 31{{\rm{x}}^3} + 4{{\rm{x}}^2} + 15 \) ta được:
\(f (1) = 4. 1^4 – 31.1^3 + 4.1^2 + 15\)
\(= 4 – 31 + 4 + 15 = -8\)
Thay \(x=-a\) vào \(f(x) = 4{{\rm{x}}^4} - 31{{\rm{x}}^3} + 4{{\rm{x}}^2} + 15 \) ta được:
\(f (-1) = 4. (- 1)^4 – 31. (- 1)^3 \)\(+ 4. (- 1)^2 + 15\)
\( = 4 + 31 + 4 + 15 = 54\)