Bài 57 trang 16 SBT toán 9 tập 2

Đề bài

Hai xe lửa khởi hành đồng thời từ hai ga cách nhau \(750km\) và đi ngược chiều nhau, sau \(10\) giờ chúng gặp nhau. Nếu xe thứ nhất khởi hành trước xe thứ hai \(3\) giờ \(45\) phút thì sau khi xe thứ hai đi được \(8\) giờ chúng gặp nhau. Tính vận tốc của mỗi xe.

Lời giải

Gọi vận tốc của xe thứ nhất là \(x (km/h)\), vận tốc của xe thứ hai là \(y (km/h)\)

Điều kiện: \(x > 0; y > 0\)

Hai xe khởi hành cùng một lúc và đi ngược chiều nhau thì sau \(10\) giờ gặp nhau, ta có phương trình:

\(10x + 10y = 750\)

Xe thứ nhất khởi hành trước xe thứ hai \(3\) giờ \(45\) phút thì sau khi xe thứ hai đi được \(8\) giờ chúng gặp nhau. Như vậy thời gian  xe thứ nhất đi là:

\(11\) giờ \(45\) phút \( = \displaystyle{{47} \over 4}\) giờ.

Khi đó ta có phương trình: \( \displaystyle{{47} \over 4}x + 8y = 750\)  

Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{10x + 10y = 750} \cr 
{ \displaystyle{{47} \over 4}x + 8y = 750} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x + y = 75} \cr 
{47x + 32y = 3000} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 75 - x} \cr 
{47x + 32\left( {75 - x} \right) = 3000} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 75 - x} \cr 
{47x - 32x = 3000 - 2400} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 75 - x} \cr 
{15x = 600} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 75 - x} \cr 
{x = 40} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 35} \cr 
{x = 40} \cr} } \right. \cr} \)

Ta thấy \(x = 40; y = 35\) thỏa mãn điều kiện bài toán.

Vậy vận tốc của xe thứ nhất là \(40 km/h\); vận tốc của xe thứ hai là \(35 km/h.\)