Bài 58 trang 90 SGK Toán 9 tập 2

Cho tam giác đều \(ABC.\) Trên nửa mặt phẳng bờ \(BC\) không chứa đỉnh \(A,\) lấy điểm \(D\) sao cho \(DB = DC\) và \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB}.\)

a) Chứng minh \(ABDC\) là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm \(A,\, B,\, D, \,C\).

Lời giải

                            

a) Theo giả thiết, \(\widehat{DCB}=\frac{1}{2}\widehat{ACB} = \dfrac{1}{2} .60^0= 30^0.\)  

 \(\widehat{ACD}=\widehat{ACB} +\widehat{BCD}\)  (tia \(CB\) nằm giữa hai tia \(CA,\, CD\))

\(\Rightarrow\)\(\widehat{ACD}=60^0+ 30^0=90^0\)  (1)

Do \(DB = CD\) nên \(∆BDC\) cân tại \(D\) \(\Rightarrow \widehat{DBC} = \widehat{DCB} = 30^0\)

Từ đó \(\widehat{ABD}= 30^0+60^0=90^0\) (2)

Từ (1) và (2) có \(\widehat{ACD}+ \widehat{ABD}=180^0\) nên tứ giác \(ABDC\) là tứ giác nội tiếp.

b) Vì \(\widehat{ABD}  = 90^0\) nên \(AD\) là đường kính của đường tròn ngoại tiếp tứ giác \(ABDC,\) do đó tâm đường tròn ngoại tiếp tứ giác \(ABDC\) là trung điểm \(AD.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”