Qua \(O\) kẻ đường thẳng song song với \(AB, CD\) cắt \(AD, BC\) lần lượt tại \(E, F\).
Ta có: \(OE // DC\) (gt)
\( \Rightarrow \dfrac{{OE}}{{DC}} = \dfrac{{AO}}{{AC}}\left( 1 \right)\) (hệ quả của định lí TaLet)
\(OF // DC\) (gt)
\( \Rightarrow \dfrac{{OF}}{{DC}} = \dfrac{{BO}}{{BD}}\left( 2 \right)\) (hệ quả của định lí TaLet)
\(AB // DC\) (gt)
\( \Rightarrow \dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}}\) (hệ quả của định lí TaLet)
\(\eqalign{
& \Rightarrow {{OC} \over {OA}} = {{OB} \over {OD}} \cr
& \Rightarrow {{OC} \over {OA}} + 1 = {{OD} \over {OB}} + 1 \cr
& \Rightarrow {{OC + OA} \over {OA}} = {{OD + OB} \over {OB}} \cr
& \Rightarrow {{AC} \over {OA}} = {{BD} \over {OB}} \cr
& \Rightarrow {{OA} \over {AC}} = {{OB} \over {BD}}\,\,\,\,(3) \cr} \)
Từ (1), (2) và (3) ta có:
\(\dfrac{{OE}}{{DC}} = \dfrac{{OF}}{{DC}} \Rightarrow OE = OF\)
Ta có: \(AB//EF\) (gt) áp dụng hệ quả của định lí TaLet ta có:
\(\begin{array}{l}
\Rightarrow \dfrac{{AN}}{{EO}} = \dfrac{{KN}}{{K{\rm{O}}}};\,\dfrac{{BN}}{{F{\rm{O}}}} = \dfrac{{KN}}{{K{\rm{O}}}}\\
\Rightarrow \dfrac{{AN}}{{EO}} = \dfrac{{BN}}{{F{\rm{O}}}} \\\text{Mà } EO=FO\\ \Rightarrow AN = BN
\end{array}\)
\( \Rightarrow \) \(N\) là trung điểm của \(AB.\)
Tương tự ta có: \(EF // DC\) (gt) áp dụng hệ quả của định lí TaLet ta có:
\(\begin{array}{l}
\Rightarrow \dfrac{{EO}}{{DM}} = \dfrac{{KO}}{{K{\rm{M}}}};\,\dfrac{{FO}}{{C{\rm{M}}}} = \dfrac{{KO}}{{K{\rm{M}}}}\\
\Rightarrow \dfrac{{EO}}{{DM}} = \dfrac{{FO}}{{C{\rm{M}}}}\\\text{Mà }EO=FO\\ \Rightarrow DM = CM
\end{array}\)
\( \Rightarrow M\) là trung điểm của \(CD\).
Vậy \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).