Đề bài
Cho tam giác \(ABC\) có cạnh \(BC\) cố định và \(\widehat A = \alpha \) không đổi. Tìm quỹ tích giao điểm của ba đường phân giác trong của tam giác đó.
Đề bài
Dựng cung chứa góc \(42^o\) trên đoạn thẳng \(AB = 3 cm.\)
Đề bài
Dựng tam giác \(ABC,\) biết \(BC = 3 cm,\) \(\widehat A = {45^o}\) và trung tuyến \(AM = 2,5 cm.\)
Đề bài
Cho nửa đường tròn đường kính \(AB\) cố định. \(C\) là điểm trên nửa đường tròn, trên dây \(AC\) kéo dài lấy điểm \(D\) sao cho \(CD = CB.\)
\(a)\) Tìm quỹ tích các điểm \(D\) khi \(C\) chạy trên nửa đường tròn đã cho.
\(b)\) Trên tia \(CA\) lấy điểm \(E\) sao cho \(CE = CB.\) Tìm quỹ tích các điểm \(E\) khi \(C\) chạy trên nửa đường tròn đã cho.
Đề bài
Cho nửa đường tròn đường kính \(AB\) và \(C\) là một điểm trên nửa đường tròn. Trên bán kính \(OC\) lấy điểm \(D\) sao cho \(OD\) bằng khoảng cách \(CH\) từ \(C\) đến \(AB.\) Tìm quỹ tích các điểm \(D\) khi \(C\) chạy trên nửa đường tròn đã cho.
Đề bài
Dựng hình vuông \(ABCD,\) biết đỉnh \(A,\) điểm \(M\) thuộc cạnh \(BC\) và điểm \(N\) thuộc cạnh \(CD.\)
Đề bài
Dựng một cung chứa góc \(60^\circ\) trên đoạn thẳng \(AB\) cho trước.
Đề bài
Cho đường tròn tâm \(O\) bán kính \(R\) và điểm \(A\) (khác \(O\)) ở trong đường tròn đó. Một đường thẳng \(d\) thay đổi, luôn đi qua \(A,\) cắt đường tròn đã cho tại hai điểm là \(B\) và \(C.\) Tìm quỹ tích trung điểm \(I\) của đoạn thẳng \(BC.\)
Đề bài
Cho tam giác \(ABC\) có ba góc nhọn. Xác định vị trí của điểm \(M\) trong tam giác sao cho \(MA + MB + MC\) nhỏ nhất.