(A) Từ giả thiết \(a\) và \(b\) không có điểm chung và các vecto \(\overrightarrow u ,\overrightarrow v \) của chúng không cùng phương, ta suy ra hai đường thẳng \(a, b\) không đồng phẳng vì chúng không trùng nhau, không cắt nhau, không song song với nhau. Vậy \(a\) và \(b\) chéo nhau. Ngược lại nếu \(a\) và \(b\) chéo nhau thì rõ ràng \(a\) và \(b\) không có điểm chung và \(\overrightarrow u ,\overrightarrow v \) không cùng phương.
Mệnh đề (A) đúng.
(B) \(a\) và \(b\) có đường vuông góc chung là \(c\), \(a ⊥ b\).
Ta có: \(\left. \matrix{a \bot b \hfill \cr a \bot c \hfill \cr} \right\} \Rightarrow a \bot (b,c)\)
Tương tự ta có: \(b ⊥ (a, c)\)
Mệnh đề (B) đúng.
(C) Xét trường hợp \(AB\) và \(CD\) cắt nhau tại một điểm \(H\).
Ta lấy \(S\) trên đường thẳng vuông góc với \(mp(ABCD)\) kẻ từ \(H\) thì rõ ràng \((SAB) ⊥(ABCD)\) và \((SCD) ⊥(ABCD)\)
Vậy (C) sai.
(D) Đúng. \(\left\{ \begin{array}{l}\overrightarrow n .\overrightarrow u = 0\\\overrightarrow n .\overrightarrow v = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow n \bot \overrightarrow u \\\overrightarrow n \bot \overrightarrow v \end{array} \right. \Rightarrow \Delta \bot \left( \alpha \right)\)
Chọn đáp án C.