Kẻ \(ME\) song song với \(AK (E ∈ BC)\).
Ta có: \(\dfrac{{BK}}{{KE}} = \dfrac{{BD}}{{DM}} = \dfrac{1}{2}\)
\(\Rightarrow KE = 2BK\)
Trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ 3. Do đó:
\(ME\) là đường trung bình của tam giác \(ACK\) nên \(EC = KE = 2BK\).
Ta có : \(BC = BK + KE + EC\)\(\, = BK + 2BK + 2BK = 5BK\)
\( \Rightarrow \dfrac{{BK}}{{BC}} = \dfrac{1}{5}\)
\(\dfrac{{{S_{ABK}}}}{{{S_{ABC}}}} = \dfrac{{BK}}{{BC}} = \dfrac{1}{5}\) (vì hai tam giác \(ABK\) và \(ABC\) có chung đường cao hạ từ \(A\)).