Bài 6 trang 169 SGK Vật lí 12

Có một đám nguyên tử của một nguyên tố mà mỗi nguyên tử có ba mức năng lượng EK, EL và EM của nguyên tử hiđrô (H.33.2). Chiếu vào đám nguyên tử này một chùm sáng đơn sắc mà mỗi phôtôn trong chùm có năng lượng là ε = EM - EK. Sau đó nghiên cứu quang phổ vạch phát xạ của đám nguyên tử trên. Ta sẽ thu được bao nhiêu vạch quang phổ?

A. Một vạch.                                  B. Hai vạch.

C. Ba vạch.                                    D. Bốn vạch.

Lời giải

Đáp án C

Nguyên tử hấp thụ phô tôn có năng lượng EM - EK, nguyên tử sẽ chuyển từ trạng thái dừng có năng lượng EK lên trạng thái có năng lượng  EM.

Từ trạng thái này có thể chuyển về trạng thái có năng lượng EL, EK. Khi nguyên tử chuyển từ trạng thái L, nguyên tử tiếp tục chuyển về trạng thái K. Như vậy, ta sẽ thu được ba vạch ứng với ba phôtôn có năng lượng là hfML; hfMK; hfLK.


Bài Tập và lời giải

Đề kiểm tra 15 phút - Chương 3 - Đề số 1 - Hình học 10

Câu 1. Tìm điểm M trên đường thẳng \(\Delta : - x + y + 2 = 0\) cách đều hai điểm \(A\left( { - 2;4} \right)\) và \(B\left( {4;0} \right)\)

Câu 2. Một hình bình hành có hai đường thẳng chứa hai cạnh có phương trình là \(5x + 2y + 6 = 0\) và \(3x - y - 3 = 0\) và một đỉnh là \(A\left( { - 1;4} \right)\) . Tìm tọa độ các đỉnh còn lại nữa của hình bình hành đó.

Xem lời giải

Đề kiểm tra 15 phút - Chương 3 - Đề số 2 - Hình học 10

Chọn phương án đúng

Câu 1. Hệ số góc của đường thẳng \(\left( \Delta  \right):\sqrt 3 x - y + 4 = 0\) là

A.\( - \dfrac{1}{\sqrt 3 }\)                  

B.\( - \sqrt 3 \)                     

C.\(\dfrac{4 }{\sqrt 3 }\)                       

D.\(\sqrt 3 \)

Câu 2. Đường thẳng qua điểm \(M\left( {2; - 1} \right)\) và nhận \(\overrightarrow u  = \left( {1; - 1} \right)\) làm véc tơ chỉ phương có phương trình tổng quát là

A.\(x + y - 3 = 0\)                                        

B.\(x + y - 1 = 0\)

C.\(x - y - 1 = 0\)

D.\(x - y + 5 = 0\)

Câu 3. Phương trình tham số của đường thẳng \(\left( d \right):4x + 5y - 8 = 0\) là

A.\(\left\{ \matrix{  x = 2 + 4t \hfill \cr  y = 5t \hfill \cr}  \right.\) 

B.\(\left\{ \matrix{  x = 2 + 5t \hfill \cr  y =  - 4t \hfill \cr}  \right.\)

C.\(\left\{ \matrix{  x = 2 + 5t \hfill \cr  y = 4t \hfill \cr}  \right.\) 

D.\(\left\{ \matrix{  x = 2 - 5t \hfill \cr  y =  - 4t \hfill \cr}  \right.\)

Câu 4. Cho tam giác ABC có ba đỉnh \(A\left( {2;0} \right),B\left( {0;3} \right),C\left( { - 3; - 1} \right)\) . Đường thẳng đi qua B và song song với đường thẳng AC có phương trình là

A.\(5x - y + 3 = 0\)  

B.\(5x + y - 3 = 0\)

C.\(x - 5y + 15 = 0\)  

D.\(x + 5y - 15 = 0\)

Câu 5. Cho đường thẳng \(d:2x + y - 2 = 0\) và điểm A(6;5). Điểm \(A'\) đối xứng với A qua (d) có tọa độ là

A.\(\left( { - 6; - 5} \right)\)                 

B.\(\left( { - 5; - 6} \right)\)                 

C.\(\left( { - 6; - 1} \right)\)                  

D.\(\left( {5;6} \right)\)

Câu 6. Cho tam giác ABC có \(A\left( {4;3} \right),B\left( {2;7} \right),C\left( { - 3; - 8} \right)\) . Chân đường cao kẻ từ đỉnh A đến cạnh BC có tọa độ là

A.\(\left( {1;4} \right)\)                     

B.\(\left( { - 1;4} \right)\)                     

C.\(\left( {1; - 4} \right)\)                     

D.\(\left( {4;1} \right)\)

Câu 7. Phương trình chính tắc của đường thẳng qua điểm \(M\left( {5; - 2} \right)\) nhận \(\overrightarrow n  = \left( {4; - 3} \right)\) làm vecto pháp tuyến là

A.\(\dfrac{{x - 5}}{4} = \dfrac{{y + 2}}{{ - 3}}\)      

B.\(\dfrac{{x + 5}}{3} = \dfrac{{y - 2}}{4}\)

C.\(\dfrac{{x - 5}}{{ - 3}} = \dfrac{{y + 2}}{4}\)

D.\(\dfrac{{x - 5}}{3} = \dfrac{{y + 2}}{4}\)

Câu 8.  Cho đường thẳng \(\Delta :x\cos \alpha  + y\sin \alpha  + 3\left( {2 - \sin \alpha } \right) = 0\) . Khoảng cách từ điểm \(M\left( {0;3} \right)\) đến đường thẳng \(\Delta \) là

A.\(\sqrt 6 \)                        

B. \(6\)                                

C.\(3\sin \alpha \)                    

D.\(\dfrac{3}{{\sin \alpha  + \cos \alpha }}\)

Câu 9. Khoảng cách giữa hai đường thẳng

\(d:5x - 7y + 4 = 0\) và \(d':10x - 14y + 11 = 0\) là

A.\(\dfrac{3 } {\sqrt {74} }\)                      

B.\(\dfrac{2 }{\sqrt {74} }\)                       

C.\(\dfrac{7 }{2\sqrt {74} }\)                     

D.\(\dfrac{3 }{\sqrt {74} }\)

Câu 10. Góc giửa hai đường thẳng \(\left( d \right):x + 2y + 4 = 0\) và \(\left( {d'} \right):x - 3y + 6 = 0\) là

A.\(135^\circ \)                     

B.\(60^\circ \)                         

C.\(45^\circ \)                          

D.\(30^\circ \)

Xem lời giải

Đề kiểm tra 15 phút - Chương 3 - Đề số 3 - Hình học 10

Câu 1. Một tam giác cân có cạnh đáy và một cạnh bên có phương trình lần lượt là \(x - y + 5 = 0\) và \(x + 2y - 1 = 0\) .Viết phương trình tham số của cạnh bên còn lại, biết rằng nó đi qua điểm \(\left( {11;1} \right)\).

Câu 2. Viết phương trình chính tắc của đường thẳng song song với đường thẳng \(\Delta :\left\{ \matrix{  x = 2t - 3 \hfill \cr  y = t + 5 \hfill \cr}  \right.\) và cách điểm \(A(1;1)\) một khoảng bằng \(3\sqrt 5 \)

Xem lời giải

Đề kiểm tra 15 phút - Chương 3 - Đề số 4 - Hình học 10

Chọn phương án đúng

Câu 1. Điểm dối xứng với điểm \(M\left( {1;2} \right)\) qua đường thẳng \(d:2x + y - 5 = 0\) là

A.\(M'\left( { - 2;6} \right)\)            

B.\(M'\left( {{9 \over 5};{{12} \over 5}} \right)\)             

C.\(M'\left( {0;{3 \over 2}} \right)\)             

D.\(M'\left( {3; - 5} \right)\)

Câu 2. Đường thẳng \(\Delta \) song song với đường thẳng \(d:3x - 4y + 12 = 0\) và cắt hai trục Ox, Oy lần lượt tại A,B sao có AB= 5 có phương trình là

A.\(3x - 4y - 6 = 0\) 

B.\(4x + 3y - 12 = 0\)

C.\(3x - 4y - 6 = 0\)  

D.\(6x - 8y + 15 = 0\)

Câu 3. Cho hình vuông có đỉnh \(A\left( { - 4;5} \right)\) và đường chéo có phương trình \(7x - y + 8 = 0\) . Diện tích hình vuông là

A.\(S = 25\)                   

B.\(S = \dfrac{25}{ 2}\)                    

C.\(S = 50\)                   

D.\(S = 5\)

Câu 4. Đường thẳng qua điểm \(M\left( { - 2;0} \right)\) và tạo với đường thẳng \(d:x + 3y - 3 = 0\) góc \(45^\circ \) có phương trình là

A.\(2x + y + 4 = 0\) 

B.\(x - 2y + 2 = 0\)

C.\(2x + y + 4 = 0\) và \(x - 2y + 2 = 0\)

D.\(2x + y + 2 = 0\) và \(x - 2y + 4 = 0\)

Câu 5. Phương trình các đường phân giác của các góc tạo bởi trục hoành và đường thẳng \(d:4x - 3y + 10 = 0\) là

A.\(4x + 3y + 10 = 0\) và \(4x - y + 10 = 0\)

B.\(x + 3y - 10 = 0\) và \(9x + 3y - 10 = 0\)

C.\(4x + 3y + 10 = 0\) và \(4x - y - 10 = 0\)

D.\(2x - 4y + 5 = 0\) và \(2x + y + 5 = 0\)

Câu  6. Cho các điểm \(A\left( {2,0} \right),B\left( {4;1} \right),C\left( {1;2} \right)\) . Phương trình đường phân giác trong của góc A của tam giác ABC là

A.\(x + 3y - 2 = 0\)                       

B.\(3x + y - 2 = 0\)

C.\(3x - y - 6 = 0\) 

D.\(x - 3y - 6 = 0\)

Câu 7. Cho tam giác ABC cân tại A có phương trình cạnh AB, BC lần lượt là \(x + 2y - 1 = 0\) và \(3x - y + 5 = 0\) và cạnh AC qua điểm \(I\left( {1; - 3} \right)\) . Khi đó phương trình cạnh AC là

A.\(x + 2y + 5 = 0\)

B.\(2x + 11y + 31 = 0\)

C. \(x + 2y + 5 = 0\) và \(2x + 11y + 31 = 0\)

D.các kết quả đều sai

Câu 8. Phương trình đường thẳng đi qua giao diểm của hai đường thẳng

\(\Delta :3x - 2y + 1 = 0\) ;  \(\Delta ':x + 3y - 2 = 0\) và vuông góc với đường thẳng 

\(d:2x + y - 1 = 0\) là \(ax + by + 13 = 0\) . Khi đó \(a + b\) bằng

A. \(-12\)                         

B. \(-11\)                             

C. \(-10\)                           

D. \(-9\)

Câu 9. Cho hình vuông ABCD với \(AB:2x + 3y - 3 = 0,\)\(\,CD:2x + 3y + 10 = 0\) . Diện tích hình vuông là

A. \(11\)                           

B. \(12\)                              

C. \(13\)                             

D. \(14\)

Câu 10. Cho \({d_1}:x + 2y + m = 0\) và \({d_2}:mx + \left( {m + 1} \right)y + 1 = 0\). Có hai giá trị của m để \({d_1}\) và \({d_2}\) hợp với nhau góc \(45^\circ \) . Tích của chúng là

A.\( - \dfrac{7 }{ 4}\)                       

B.\( - \dfrac{3 }{8}\)                            

C.\(\dfrac{7 }{4}\)                             

D.\(\dfrac{3 }{ 8}\)

Xem lời giải