Bài 6 trang 38 SGK Toán 9 tập 2

Cho hàm số \(y = f(x) = {x^2}\).

a) Vẽ đồ thị của hàm số đó.

b) Tính các giá trị \(f(-8); f(-1,3); f(-0,75); f(1,5)\).

c) Dùng đồ thị để ước lượng các giá trị \({(0,5)^2};{( - 1,5)^2};{(2,5)^2}\).

d) Dùng đồ thị để ước lượng vị trí các điểm trên trục hoành biểu diễn các số \(\sqrt{3}; \sqrt{7}\).

Lời giải

a) Vẽ đồ thị hàm số y = x2. 

b) Ta có \(y = f(x) = {x^2}\) nên

\(f(-8)=(-8)^2=64.\)

\(f(-1,3)=(-1,3)^2=1,69\).

\(f(-0,75)=(-0,75)^2=0,5625\).

\(f(1,5)=1,5^2=2,25\).

c) Theo đồ thị ta có:

+) Để ước lượng giá trị \((0,5)^2\) ta tìm điểm \(A\) thuộc đồ thị và có hoành độ là \(0,5\). Khi đó tung độ điểm \(A\) chính là giá trị của \((0,5)^2\).

+) Để ước lượng giá trị \((-1,5)^2\) ta tìm điểm \(B\) thuộc đồ thị và có hoành độ là \(-1,5\). Khi đó tung độ điểm \(B\) chính là giá trị của \((-1,5)^2\).

+) Để ước lượng giá trị \((2,5)^2\) ta tìm điểm \(C\) thuộc đồ thị và có hoành độ là \(2,5\). Khi đó tung độ điểm \(C\) chính là giá trị của \((2,5)^2\).

d) Để ước lượng vị trí điểm biểu diễn \(\sqrt 3\) trên trục hoành ta tìm điểm \(D\) thuộc đồ thị và có tung độ là \((\sqrt 3)^2=3\). Khi đó hoành độ điểm \(D\) chính là vị trí biểu diễn của \(\sqrt 3\).

Để ước lượng vị trí điểm biểu diễn \(\sqrt 7\) trên trục hoành ta tìm điểm \(E\) thuộc đồ thị và có tung độ là \((\sqrt 7)^2=7\). Khi đó hoành độ điểm \(E\) chính là vị trí biểu diễn của \(\sqrt 7\).