Do \(\Delta\) là trục của hình vuông \(ABCD\), nên tâm \(I\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD\) nằm trên \(\Delta\).
ABCD là hình vuông cạnh a \( \Rightarrow AC = a\sqrt 2 \Rightarrow OC = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)
Vì \(SO = \displaystyle {a \over 2} < OC\) nên tâm \(I\) của mặt cầu nằm trên phần kéo dài của \(SO\).
Ta có: \(SI = IC \Rightarrow \displaystyle {a \over 2} + OI = \sqrt {O{I^2} + O{C^2}} \)
\( \Rightarrow {\left( \displaystyle {{a \over 2} + OI} \right)^2} = O{I^2} +\displaystyle {{{a^2}} \over 2}\)
\( \Rightarrow O{I^2} + a.OI + \displaystyle {{{a^2}} \over 4} = O{I^2} + \displaystyle {{{a^2}} \over 2}\)
\( \Rightarrow OI = \displaystyle {a \over 4} \Rightarrow R = SO + OI = \displaystyle {{3a} \over 4}\)
Vậy tâm \(I\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD\) nằm trên \(SO\) mà \(SI = R =\) \(\displaystyle {{3a} \over 4}\) ; (\(R\) là bán kính hình cầu). Khi đó diện tích mặt cầu là: \(S = 4\pi {R^2} = \displaystyle {9 \over 4}\pi {a^2}\) (đvdt)
Thể tích của khối cầu là: \(V = \displaystyle {4 \over 3}\pi {R^3} = \displaystyle {9 \over {16}}{\pi a^3}\) (đvdt)