a) Đáp án B
\(\eqalign{
& F = \sqrt {F_1^2 + F_2^2 + 2{F_1}{F_2}\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right)} \cr&\Rightarrow {F^2} = F_1^2 + F_2^2 + 2{F_1}{F_2}\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) \cr
& \Rightarrow \cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) = {{{F^2} - F_1^2 - F_2^2} \over {2{F_1}{F_2}}} \cr& \Rightarrow cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) = {{{{10}^2} - {{10}^2} - {{10}^2}} \over {2.10.10}} = - {1 \over 2} \cr
& \Rightarrow \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) = {120^0} \cr} \)
b) Hình minh họa: