a) Ta có: \(\widehat A = \widehat B = \widehat C = {60^0}\) (gt)
Tâm \(O\) của đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của ba cạnh cũng chính là giao điểm của ba đường phân giác của tam giác đều \(ABC\).
Nên \(\widehat {{A_1}} = \widehat {{A_2}} = \widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}} = {30^0}\)
Suy ra: \(\widehat {AOB} = {180^0} - \widehat {{A_1}} - \widehat {{B_1}} = {180^0} - {30^0} - {30^0} = {120^0}\)
Tương tự ta suy ra: \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}\)
b) Từ \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}\) ta suy ra:
\(sđ\overparen{AB}=sđ\overparen{CA}=sđ\overparen{CB}\) \(= 120^0\)
\(sđ\overparen{ABC}=sđ\overparen{BCA}=sđ\overparen{CAB}\) \(=360^0- 240^0=120^0\)