Ta có: \(2S_{OAB} = AB.OH = AB\) (vì \(OH = 1\)).
Vậy diện tích \(∆OAB\) nhỏ nhất khi \(AB\) có độ dài ngắn nhất.
Vì \(AB = AH + HB\) mà \(AH.HB = OH^2= 1\) nên \(AB\) có giá trị nhỏ nhất khi \(AH = HB\) tức \(∆OAB\) vuông cân: \(OA = OB\) và \(AB = 2AH = 2OH = 2\).
\(AB^2= 4 = 2OA^2\) suy ra \(OA= OB = \sqrt2\).
Khi đó tọa độ của \(A, B\) là \(A(\sqrt 2; 0)\) và \(B(0; \sqrt2)\).