Gọi \(M,M'\) lần lượt là trung điểm của \(BC,B'C'\), ta có \(\left( {AA'M'M} \right) \equiv \left( {AIJ} \right)\) do đó thiết diện của lăng trụ tạo bởi mặt phẳng \((AIJ)\) là tứ giác \(AA'M'M\).
Ta có \(\left\{ \begin{array}{l}\left( {AA'M'M} \right) \cap \left( {A'B'C'} \right) = A'M'\\\left( {AA'M'M} \right) \cap \left( {ABC} \right) = AM\\\left( {ABC} \right)//\left( {A'B'C'} \right)\end{array} \right. \Rightarrow A'M'//AM\).
Lại có \(\Delta ABC = \Delta A'B'C' \Rightarrow AM = A'M'\).
Vậy tứ giác \(AA'M'M\) là hình bình hành.
Chọn đáp án D.