Gọi S là diện tích hình thang ABCD.
1) Theo công thức
\(S = \dfrac{BH(BC+DA)}{2}\)
Ta có: \(AD = AH + HK + KD\)
\(\Rightarrow AD = 7 + x + 4 = 11 + x\)
Có \(BH\bot HK, CK\bot HK\) (giả thiết)
Mà \(BC//HK\) (vì \(ABCD\) là hình thang)
Do đó \(BH\bot BC, CK\bot BC\)
Tứ giác \(BCKH\) có bốn góc vuông nên \(BCKH\) là hình chữ nhật
Mặt khác: \(BH=HK=x\) (giả thiết) nên \(BCKH\) là hình vuông
\( \Rightarrow BH = BC =CK=KH= x\)
Thay \(BH=x\), \(BC=x\), \(DA=11+x\) vào biểu thức tính \(S\) ta được:
\(S = \dfrac{{x\left( {x + 11 + x} \right)}}{2} = \dfrac{{x(11 + 2x)}}{2}\)\(\,=\dfrac{{11x + 2{x^2}}}{2}\)
2) Ta có:
\(\eqalign{
& S = {S_{ABH}} + {S_{BCKH}} + {S_{CKD}} \cr
& \,\,\,\,\, = {1 \over 2}BH.AH + BH.HK + {1 \over 2}CK.KD \cr
& \,\,\,\,\, = {1 \over 2}x.7 + x.x + {1 \over 2}.x.4 \cr
& \,\,\,\,\, = {7 \over 2}x + {x^2} + 2x \cr} \)
Vậy \(S = 20\) ta có hai phương trình:
\(\dfrac{{11x + 2{x^2}}}{2}= 20\) (1)
\( \dfrac{7}{2}x + x^2+ 2x = 20 \) (2)
Cả hai phương trình không có phương trình nào là phương trình bậc nhất.