\(\overrightarrow{AB}.\overrightarrow{OO'}=\overrightarrow{AB}.(\overrightarrow{AO'}-\overrightarrow{AO})\)
\(=\overrightarrow{AB}.\overrightarrow{AO'}-\overrightarrow{AB}.\overrightarrow{AO}\)
\(= AB.AO'.\cos45^{0} - AB.AO.\cos45^{0}\)
\(= 0\).
Vậy \(AB ⊥ OO'\).
\(\left\{ \begin{array}{l}CD//C'D'\\CD = C'D'\end{array} \right. \Rightarrow CDD'C'\) là hình bình hành (Tứ giác có một cặp cạnh đối song song và bằng nhau).
\(\left\{ \begin{array}{l}AB \bot BC\\AB \bot BC'\end{array} \right. \Rightarrow AB \bot \left( {BCC'} \right) \) \(\Rightarrow AB \bot CC'\)
Mà \(CD // AB \Rightarrow CD ⊥ CC' \Rightarrow CDD'C'\) là hình chữ nhật (Hình bình hành có 1 góc vuông).