Bài 60 trang 86 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) có\(\widehat A = {70^0}\), điểm \(M\) thuộc cạnh \(BC.\) Vẽ điểm \(D\) đối xứng với \(M\) qua \(AB,\) vẽ điểm \(E\) đối xứng với \(M\) qua \(AC.\)

\(a)\) Chứng minh rằng \(AD = AE.\)

\(b)\) Tính số đo góc \(DAE.\)

Lời giải

\(a)\) Vì \(D\) đối xứng với \(M\) qua trục \(AB\)

\(⇒ AB\) là đường trung trực \(MD.\)

\(⇒ AD = AM\) (tính chất đường trung trực) \((1)\)

Vì \(E\) đối xứng với \(M\) qua trục \(AC\)

\((⇒ AC\) là đường trung trực của \(ME\)

\(⇒ AM = AE\) ( tính chất đường trung trực) \((2)\)

Từ \((1)\) và \((2)\) suy ra : \(AD = AE\)

\(b)\) \(AD = AM\) suy ra \(∆ AMD\) cân tại \(A\) có  \(AB ⊥ MD\)

nên \(AB\) cũng là đường phân giác của góc \(MAD\)

\( \Rightarrow {\widehat A_1} = {\widehat A_2}\)

\(AM = AE\) suy ra \(∆ AME\) cân tại \(A\) có \(AC ⊥ ME\) nên \(AC\) cũng là đường phân giác của \(\widehat {MAE}\)

\( \Rightarrow {\widehat A_3} = {\widehat A_4}\)

\(\widehat {DAE} = {\widehat A_1} + {\widehat A_2} + {\widehat A_3} + {\widehat A_4}\)

\(= 2\left( {{{\widehat A}_2} + {{\widehat A}_3}} \right) \)\(= 2\widehat {BAC}\)\( = {2.70^0} = {140^0}\)