Bài 60 trang 92 SGK Toán 8 tập 2

Cho tam giác vuông \(ABC\), và đường phân giác \(BD\) (\(D\) thuộc cạnh \(AC\)).

a) Tính tỉ số \(\dfrac{{A{\rm{D}}}}{{C{\rm{D}}}}\) .

b) Cho biết độ dài \(AB = 12,5 cm\). Hãy tính chu vi và diện tích của tam giác \(ABC\).

Lời giải

 

a) Xét tam giác \(BCA\) vuông tại \(A\) (gt) có:

\(\begin{array}{l}\widehat {ACB} + \widehat {ABC} = {90^0}\\ \Rightarrow \widehat {ABC} = {90^0} - \widehat {ACB} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {90^0} - {30^0} = {60^0}\end{array}\)

Trên tia đối của tia \(AB\) lấy điểm \(B'\) sao cho \(AB = AB'\) (1)

Xét hai tam giác vuông \(ABC\) và \(AB'C\) có:

\(AC\) chung (gt)

\(AB = AB'\) (gt)

\( \Rightarrow \Delta ABC = \Delta AB'C\) (cạnh góc vuông - cạnh góc vuông)

\( \Rightarrow BC = B'C\) (2 cạnh tương ứng)

\( \Rightarrow \Delta BB'C\) cân tại \(C\).

Lại có \(\widehat {ABC} = {60^0}\) nên suy ra \(\Delta BB'C\) đều (dấu hiệu nhận biết tam giác đều) (2)

Từ (1) và (2) \( \Rightarrow \dfrac{{AB}}{{BC}} = \dfrac{1}{2}\)

Vì \(BD\) là đường phân giác của \(\Delta ABC\) nên:

\(\dfrac{{DA}}{{DC}} = \dfrac{{BA}}{{BC}} = \dfrac{1}{2}\)

b) \(∆ABC\) vuông tại \(A\) nên áp dụng định lí Pitago ta có:

\(\eqalign{
& A{C^2} = B{C^2} - A{B^2},\,BC = 2AB \cr
& \Rightarrow A{C^2} = 4A{B^2} - A{B^2} = 3A{B^2} \cr
& \Rightarrow AC = \sqrt {3A{B^2}} = AB\sqrt 3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 12,5\sqrt 3 \approx 21,65\,cm \cr} \)

Gọi \(p\) là chu vi \(∆ABC\)

\( \Rightarrow p = AB + BC + CA\)

\( \Rightarrow p = 3AB + AC = 3.12,5 + 12,5\sqrt 3 \)

\( \Rightarrow p = 12,5 (3+\sqrt 3 ) \approx 59,15\left( {cm} \right)\)

\({S_{ABC}} = \dfrac{1 }{ 2}AB.AC \approx 135,31(c{m^2})\)


Bài Tập và lời giải

A. Hoạt động thực hành - Bài 12C: Những người tôi yêu
Giải bài 12C: Những người tôi yêu phần hoạt động thực hành trang 130, 131, 132 sách VNEN Tiếng Việt 5 với lời giải dễ hiểu

Xem lời giải

B. Hoạt động ứng dụng - Bài 12B: Những người tôi yêu

Đề bài

Quan sát một người thân làm việc. Ghi lại những điều em quan sát được.

 

Xem lời giải