Gọi \(Q\) là giao điểm của \(PF\) và \(AK,\) \(I\) là giao điểm của \(PE\) và \(CL.\)
Trong tam giác \(FPE\) có \( PE // AK\) hay \(QM // PE\)
Theo định lí Ta-lét ta có: \( \displaystyle {{FQ} \over {FP}} = {{FM} \over {FE}}\) (1)
Trong tam giác \(ALO\) có \(PF // CL\) hay \(FQ // LO\)
Theo hệ quả định lí Ta-lét ta có: \(\displaystyle {{AF} \over {AL}} = {{FQ} \over {LO}}\) (2)
Trong tam giác \(ALC\) có \(PF // CL\)
Theo hệ quả định lí Ta-lét ta có: \(\displaystyle{{AF} \over {AL}} = {{FP} \over {CL}}\) (3)
Từ (2) và (3) suy ra \(\displaystyle{{FQ} \over {LO}} = {{FP} \over {CL}} \)\(\displaystyle\,\Rightarrow {{FQ} \over {FP}} = {{LO} \over {CL}}\)
Vì \(\displaystyle LO = {1 \over 3} CL\) (tính chất đường trung tuyến) nên \(\displaystyle{{FQ} \over {FP}} = {1 \over 3}\) (4)
Từ (1) và (4) suy ra \(\displaystyle{{FM} \over {FE}} = {1 \over 3} \)\(\,\displaystyle\Rightarrow FM = {1 \over 3}FE\)
Trong tam giác \(EPF\) có \(PF // CL\) hay \(NI // PF\)
Theo định lí Ta-lét ta có: \(\displaystyle{{EI} \over {EP}} = {{EN} \over {EF}}\) (5)
Trong tam giác \(CKO\) có \(EI // OK\)
Theo hệ quả định lí Ta-lét ta có: \(\displaystyle{{CE} \over {CK}} = {{EI} \over {KO}}\) (6)
Trong tam giác \(CKA\) có \(PE // AK\)
Theo hệ quả định lí Ta-lét ta có: \(\displaystyle {{CE} \over {CK}} = {{EP} \over {AK}}\) (7)
Từ (6) và (7) suy ra: \(\displaystyle {{EI} \over {OK}} = {{EP} \over {AK}}\) \(\displaystyle \Rightarrow {{EI} \over {EP}} = {{OK} \over {AK}} \)
Vì \(OK = \displaystyle{1 \over 3}AK\) (tính chất đường trung tuyến) nên \(\displaystyle{{EI} \over {EP}} = {1 \over 3}\) (8)
Từ (5) và (8) suy ra: \(\displaystyle {{EN} \over {EF}} = {1 \over 3} \)\(\,\displaystyle \Rightarrow EN = {1 \over 3}EF \)
Ta có:
\(\eqalign{ & MN = EF - \left( {EN + FM} \right) \cr & \;\;\;\;\;\; \;\;= EF - \left( {{1 \over 3}EF + {1 \over 3}EF} \right) \cr&\;\;\;\;\;\;\;\;= {1 \over 3}EF \cr} \)
Vậy \(EN = MN = MF.\)