Bài 60 trang 98 SBT toán 8 tập 2

Đề bài

Tam giác \(ABC\) có hai trung tuyến \(AK\) và \(CL\) cắt nhau tại \(O.\) Từ một điểm \(P\) bất kì trên cạnh \(AC\), vẽ các đường thẳng \(PE\) song song với \(AK,\) \(PF\) song song với \(CL\) (\(E\) thuộc \(BC,\) \(F\) thuộc \(AB\)). Các trung tuyến \(AK, CL\) cắt đoạn thẳng \(EF\) theo thứ tự tại \(M, N\).

Chứng minh rằng các đoạn thẳng \(FM, MN, NE\) bằng nhau. 

Lời giải

Gọi \(Q\) là giao điểm của \(PF\) và \(AK,\) \(I\) là giao điểm của \(PE\) và \(CL.\)

Trong tam giác \(FPE\) có \( PE // AK\) hay \(QM // PE\)

Theo định lí Ta-lét ta có: \( \displaystyle {{FQ} \over {FP}} = {{FM} \over {FE}}\)  (1)

Trong tam giác \(ALO\) có \(PF // CL\) hay \(FQ // LO\)

Theo hệ quả định lí Ta-lét ta có: \(\displaystyle  {{AF} \over {AL}} = {{FQ} \over {LO}}\)    (2)

Trong tam giác \(ALC\) có \(PF // CL\)

Theo hệ quả định lí Ta-lét ta có: \(\displaystyle{{AF} \over {AL}} = {{FP} \over {CL}}\)    (3)

Từ (2) và (3) suy ra \(\displaystyle{{FQ} \over {LO}} = {{FP} \over {CL}} \)\(\displaystyle\,\Rightarrow {{FQ} \over {FP}} = {{LO} \over {CL}}\)

Vì \(\displaystyle LO = {1 \over 3} CL\) (tính chất đường trung tuyến) nên \(\displaystyle{{FQ} \over {FP}} = {1 \over 3}\)          (4)

Từ (1) và (4) suy ra \(\displaystyle{{FM} \over {FE}} = {1 \over 3} \)\(\,\displaystyle\Rightarrow FM = {1 \over 3}FE\)

Trong tam giác \(EPF\) có \(PF // CL\) hay \(NI // PF\)

Theo định lí Ta-lét ta có: \(\displaystyle{{EI} \over {EP}} = {{EN} \over {EF}}\)    (5)

Trong tam giác \(CKO\) có \(EI // OK\)

Theo hệ quả định lí Ta-lét ta có: \(\displaystyle{{CE} \over {CK}} = {{EI} \over {KO}}\)  (6)

Trong tam giác \(CKA\) có \(PE // AK\)

Theo hệ quả định lí Ta-lét ta có: \(\displaystyle {{CE} \over {CK}} = {{EP} \over {AK}}\)   (7)

Từ (6) và (7) suy ra: \(\displaystyle {{EI} \over {OK}} = {{EP} \over {AK}}\) \(\displaystyle  \Rightarrow {{EI} \over {EP}} = {{OK} \over {AK}} \)

Vì \(OK = \displaystyle{1 \over 3}AK\) (tính chất đường trung tuyến) nên \(\displaystyle{{EI} \over {EP}} = {1 \over 3}\)                   (8)

Từ (5) và (8) suy ra: \(\displaystyle {{EN} \over {EF}} = {1 \over 3} \)\(\,\displaystyle \Rightarrow EN = {1 \over 3}EF  \)

Ta có:

\(\eqalign{  & MN = EF - \left( {EN + FM} \right)  \cr  & \;\;\;\;\;\; \;\;= EF - \left( {{1 \over 3}EF + {1 \over 3}EF} \right) \cr&\;\;\;\;\;\;\;\;= {1 \over 3}EF \cr} \)

Vậy \(EN = MN = MF.\)