Bài 61 trang 145 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\) (\(B, C\) nằm cùng phía đối với \(xy\)). Kẻ \(BD\) và \(CE\) vuông góc với \(xy\). Chứng minh rằng:

a) \(∆BAD = ∆ACE\).

b) \(DE = BD + CE\).

Lời giải

a) Ta có: \(\widehat {BA{\rm{D}}} + \widehat {BAC} + \widehat {CA{\rm{E}}} = 180^\circ \)

Mà \(\widehat {BAC} = 90^\circ \left( {gt} \right) \) \(\Rightarrow \widehat {BA{\rm{D}}} + \widehat {CA{\rm{E}}} = 90^\circ \)            (1)

Xét \(∆AEC\) có \(\widehat {A{\rm{E}}C} = 90^\circ\)

\(  \Rightarrow \widehat {CA{\rm{E}}} + \widehat {AC{\rm{E}}}{\rm{ = 90}}^\circ \)              (2)

Từ (1) và (2) suy ra: \(\widehat {BA{\rm{D}}} = \widehat {AC{\rm{E}}}\)

Xét hai tam giác vuông \(AEC\) và \(BDA\), ta có: 

\(\widehat {A{\rm{E}}C} = \widehat {B{\rm{D}}A} = 90^\circ \)

\(AC = AB\) (gt)

\(\widehat {AC{\rm{E}}} = \widehat {BA{\rm{D}}}\) (chứng minh trên)

\( \Rightarrow   ∆AEC = ∆BDA\) (cạnh huyền, góc nhọn)

b) Ta có: \(∆AEC = ∆BDA\)

\( \Rightarrow  AE = BD\;; EC = DA\) (các cạnh tương ứng)

Mà \(DE = DA + AE\)

Vậy \(DE = CE + BD\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”