Ta có:
\(\begin{array}{l}
\dfrac{x}{2} = \dfrac{y}{3} \Rightarrow \dfrac{x}{2}.\dfrac{1}{4} = \dfrac{y}{3}.\dfrac{1}{4} \Rightarrow \dfrac{x}{8} = \dfrac{y}{{12}}\\
\dfrac{y}{4} = \dfrac{z}{5} \Rightarrow \dfrac{y}{4}.\dfrac{1}{3} = \dfrac{z}{5}.\dfrac{1}{3} \Rightarrow \dfrac{y}{{12}} = \dfrac{z}{{15}}\\ \Rightarrow\dfrac{x}{8} = \dfrac{y}{{12}} = \dfrac{z}{{15}}
\end{array}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8} = \dfrac{y}{{12}} = \dfrac{z}{{15}} = \dfrac{{x + y - z}}{{8 + 12 - 15}} = \dfrac{{10}}{5} = 2\)
Ta có:
\(\begin{array}{l} \dfrac{x}{8} = 2 \Rightarrow x = 8.2 = 16\\ \dfrac{y}{{12}} = 2 \Rightarrow y = 12.2 = 24\\ \dfrac{z}{{15}} = 2 \Rightarrow z = 15.2 = 30 \end{array}\)