a. \(\displaystyle {{98{x^2} - 2} \over {x - 2}}= 0\) khi \(98{x^2} - 2 = 0\) và \(x – 2 ≠ 0\)
Ta có: \(x – 2 ≠ 0\) \(\Rightarrow x ≠ 2\).
Và \(98{x^2} - 2 = 0\)
\( \Rightarrow 2\left( {49{x^2} - 1} \right) = 0\)
\(\Rightarrow \left( {7x - 1} \right)\left( {7x + 1} \right) = 0 \)
\( \Rightarrow \left[ \begin{array}{l}7x + 1 = 0\\7x - 1 = 0\end{array} \right.\) \( \Rightarrow \left[ \begin{array}{l}x = - \dfrac{1}{7}\\x = \dfrac{1}{7}\end{array} \right.\)
Có \(\displaystyle x = {1 \over 7}\) và \(\displaystyle x = - {1 \over 7}\) thỏa mãn điều kiện \(x ≠ 2\).
Vậy \(\displaystyle x = {1 \over 7}\) hoặc \(\displaystyle x = - {1 \over 7}\) thì phân thức \(\displaystyle {{98{x^2} - 2} \over {x - 2}}\) có giá trị bằng \(0\).
b. \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\)\( \displaystyle = {{3x - 2} \over {{{\left( {x + 1} \right)}^2}}} = 0\) khi \(3x – 2 = 0\) và \({\left( {x + 1} \right)^2} \ne 0\)
Ta có : \({\left( {x + 1} \right)^2} \ne 0\)\( \Rightarrow x + 1 \ne 0\)\( \Rightarrow x \ne - 1\)
Với \(3x - 2 = 0 \)\(\Rightarrow x = \displaystyle {2 \over 3}\)
Nhận thấy \(x = \displaystyle {2 \over 3}\) thỏa mãn điều kiện \(x ≠ - 1\)
Vậy \(x = \displaystyle {2 \over 3}\) thì phân thức \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\) có giá trị bằng \(0\).