Bài 61 trang 50 SGK Toán 7 tập 2

Đề bài

Tính tích các đơn thức sau rồi tìm hệ số và bậc của tích tìm được.

a) \(\dfrac{1}{4}x{y^3}\) và \(- 2{x^2}y{z^2}\)

b) \( - 2{x^2}yz\) và \( - 3x{y^3}z\)

Lời giải

a) Tích của \(\dfrac{1}{4}x{y^3}\) và \(- 2{x^2}y{z^2}\) là:

\(\dfrac{1}{4}x{y^3}.\left( { - 2{x^2}y{z^2}} \right)\)\(\, = \left[ {\dfrac{1}{4}.\left( { - 2} \right)} \right].\left( {x.{x^2}} \right).\left( {{y^3}.y} \right).{z^2} \)\(\,= \dfrac{{ - 1}}{2}{x^3}{y^4}{z^2}\)

Đơn thức tích có hệ số là \(\dfrac{{ - 1}}{2}\) ; có bậc \(9\).

b) Tích của \( - 2{x^2}yz\) và \( - 3x{y^3}z\) là:

\( - 2{x^2}yz.\left( { - 3x{y^3}z} \right) \)\(\,= \left[ {\left( { - 2} \right).\left( { - 3} \right)} \right].\left( {{x^2}.x} \right)\left( {y.{y^3}} \right)\left( {z.z} \right)\)\(\, = 6{x^3}{y^4}{z^2}\)

Đơn thức tích có hệ số là \(6\); có bậc \(9\).

 

 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”