Bài 61 trang 87 SBT toán 8 tập 1

Đề bài

Cho tam giác nhọn \(ABC\) có\(\widehat A = {60^0}\), trực tâm \(H.\) Gọi \(M\) là điểm đối xứng với \(H\) qua \(BC.\)

\(a)\) Chứng minh \(∆ BHC = ∆ BMC.\)

\(b)\) Tính \(\widehat {BMC}\)

Lời giải

\(a)\) Vì \(M\) đối xứng với \(H\) qua trục \(BC\)

  \(⇒ BC\) là đường trung trực của \(HM\)

  \(⇒ BH = BM\) ( tính chất đường trung trực)

      \(CH = CM\) ( tính chất đường trung trực)

Suy ra: \(∆ BHC = ∆ BMC \;\; (c.c.c)\)

\(b)\) Gọi giao điểm \(BH\) với \(AC\) là \(D,\) giao điểm của \(CH\) và \(AB\) là \(E\)

\(H\) là trực tâm của \(∆ ABC\)

\(⇒ BD ⊥ AC, CE ⊥ AB\)

Xét tứ giác \(ADHE\) ta có:

 \(\widehat {DHE} = {360^0} - \left( {\widehat A + \widehat D + \widehat E} \right) \)

\(= {360^0} - \left( {{{60}^0} + {{90}^0} + {{90}^0}} \right) = {120^0}\)

\(\widehat {BHC} = \widehat {DHE}\)  (đối đỉnh)

\(∆ BHC = ∆ BMC\) (chứng minh trên)

\( \Rightarrow \widehat {BMC} = \widehat {BHC}\)

Suy ra: \(\widehat {BMC} = \widehat {DHE} = {120^0}\)