Bài 6.2 phần bài tập bổ sung trang 88 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(AB\) lấy điểm \(D,\) trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AD = AE.\) Gọi \(M\) là trung điểm của \(BC.\) Chứng minh rằng \(D\) đối xứng với \(E\) qua \(AM.\)

Lời giải

\(∆ ABC\) cân tại \(A\)

\(AM\) là đường trung tuyến

\(⇒ AM\) là tia phân giác \(\widehat {BAC}\)

\( \Rightarrow \widehat {BAM} = \widehat {MAC}\) \((1)\)

Kéo dài \(MA\) cắt \(DE\) tại \(N\), ta có:

\(\widehat {BAM} = \widehat {DAN}\) (đối đỉnh) \((2)\)

\(\widehat {MAC} = \widehat {NAE}\) (đối đỉnh) \((3)\)

Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {DAN} = \widehat {NAE}\)

\(∆ ADE\) cân tại \(A\) có \(AN\) là tia phân giác

\(⇒ AN\) là đường trung trực của \(DE\)

hay \(AM\) là đường trung trực của \(DE\)

Vậy \(D\) đối xứng với \(E\) qua \(AM.\)