Bài 6.2 phần bài tập bổ sung trang 93 SBT toán 8 tập 2

Đề bài

Hình bình hành \(ABCD\) có hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\) và \(AC = 2AB.\)

a) Vẽ trung tuyến \(BE\) của tam giác \(ABO.\) Chứng minh rằng \(\widehat {ABE} = \widehat {ACB}\).

b) Gọi \(M\) là trung điểm của cạnh \(BC\), chứng minh rằng \(EM\) vuông góc với đường chéo \(BD.\)

Lời giải

a) Vì \(ABCD\) là hình bình hành nên \(\displaystyle AO = CO = {1 \over 2}AC\)

\(BE\) là trung tuyến của tam giác \(ABO\) nên \(\displaystyle AE = {1 \over 2}AO\)

Mặt khác, \( AC = 2AB \) (gt) nên \(AB = AO\) do đó \(\displaystyle AE = {1 \over 2}AB\)

Xét \(\Delta  AEB\) và \(\Delta ABC\) có:

\(\widehat A\) chung

\(\displaystyle {{AE} \over {AB}} = {{AB} \over {AC}} = {1 \over 2}\)

\( \Rightarrow  ∆ AEB\) đồng dạng \(∆ ABC\) (c.g.c)

\( \Rightarrow  \widehat {ABE} = \widehat {ACB}\) (hai góc tương ứng).

b) Theo chứng minh ở câu a) \(∆ AEB\) đồng dạng \(∆ ABC\) theo tỉ số \(\displaystyle k = {1 \over 2}\) nên ta có \(\displaystyle BE = {1 \over 2}BC\) hay \(\displaystyle  BE = BM={1 \over 2}BC\) (vì \(M\) là trung điểm của \(BC\))

\( \Rightarrow  ∆ BEM\) cân tại \(B.\)

Xét \(∆EBC \) có \(\displaystyle {{BE} \over {BC}} = {{OE} \over {OC}} = {1 \over 2}\)

\( \Rightarrow  BO \) là đường phân giác góc \(EBC\).

\(BO\) là đường phân giác góc \(EBC\) đỉnh của tam giác cân \(BEM\) nên \(BO\) đồng thời là đường cao vuông góc với cạnh đáy \(EM\).

Vậy \(EM\bot \,BD\).