Bài 63 trang 136 SGK Toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại\( A\). Kẻ \(AH\) vuông góc với \(BC\) ( \(H \) thuộc \(BC\)). Chứng minh rằng:

a) \( HB = HC\);

b) \(\widehat{BAH}=\widehat{CAH}\)

Lời giải

a) Tam giác \( ABH\) vuông tại \( H\)

Tam giác \(ACH\) vuông tai \(H\)

Xét hai tam giác vuông \(ABH\) và \( ACH\) có: 

+) \(AB = AC\) ( vì tam giác \(ABC\) cân tại \(A \))

+) \(AH\) cạnh chung

\( \Rightarrow \Delta ABH = \Delta ACH\) (cạnh huyền-cạnh góc vuông)

\( \Rightarrow HB=HC\) (hai cạnh tương ứng).

b) \( \Delta ABH = \Delta ACH \)  (chứng minh câu a)

\( \Rightarrow \widehat{BAH}=\widehat{CAH}\) (hai góc tương ứng)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”