Gọi độ dài đoạn \(MA = x (cm)\); điều kiện \( 0 < x < 12\)
Vì \(∆ ABC\) vuông cân tại \(A\) nên tam giác \(BMP \) vuông cân tại \(M\)
\(⇒ MP = MB = AB – AM = 12 – x (cm)\)
Diện tích hình bình hành \(MNCP\) bằng \(MP.MA\)
Suy ra: \(MP.MA = (12 – x)x\)
Ta có phương trình:
\(\eqalign{
& \left( {12 - x} \right)x = 32 \cr
& \Rightarrow {x^2} - 12x + 32 = 0 \cr
& \Delta ' = {\left( { - 6} \right)^2} - 1.32 = 36 - 32 = 4 > 0 \cr
& \sqrt {\Delta '} = \sqrt 4 = 2 \cr
& {x_1} = {{6 + 2} \over 1} = 8 \cr
& {x_2} = {{6 - 2} \over 1} = 4 \cr} \)
Cả hai giá trị \(x_1 = 8\) và \(x_2 = 4 \) thỏa mãn điều kiện bài toán
Vậy điểm \(M\) cách điểm \(A\) là \(8cm\) hoặc \(4cm\)