Bài 64 trang 50 SGK Toán 7 tập 2

Hãy viết các đơn thức đồng dạng với đơn thức \({x^2}y\) sao cho tại \(x = -1\) và \(y = 1\), giá trị của các đơn thức đó là số tự nhiên nhỏ hơn \(10\).

Lời giải

Đơn thức đồng dạng với đơn thức \({x^2}y\) là: \(a{x^2}y\) với \(a\) là hằng số khác \(0\).

Vì tại \(x = -1\) và \(y = 1\) giá trị của đơn thức là số tự nhiên nhỏ hơn \(10\) nên:

\(a.{\left( { - 1} \right)^2}.1=a < 10\)

Vậy \(a\) là số tự nhiên (khác \(0\)) nhỏ hơn \(10\) nên \(a\) nhận các giá trị \(1;2;3;4;5; 6;7;8;9\).

Vậy các đơn thức thỏa mãn yêu cầu đề bài là: \({x^2}y;\,\,2{x^2}y;\,\,3{x^2}y;\,\,4{x^2}y;\,\,5{x^2}y;\)\(\,\,6{x^2}y;\,\,7{x^2}y;\,\,8{x^2}y;\,\,9{x^2}y\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”