Bài 65 trang 137 SGK Toán 7 tập 1

Đề bài

Cho tam giác \( ABC\) cân tại \( A\) (\(\widehat{A}\)< \(90^o\)). Vẽ \(BH \perp A C\) (\( H\) thuộc \(AC\)), \(CK\perp AB\)  (\( K \) thuộc \(AB\))

a) Chứng minh rằng \( AH = AK.\)

b) Gọi \( I\) là giao điểm của \( BH\) và \( CK\). Chứng minh rằng tia \(  AI \) là tia phân giác của góc \(  A.\)

Lời giải

a) \(\Delta ABH \) vuông tại \(H\);  \(\Delta ACK\) vuông tại \(K\).

Xét hai tam giác vuông \(ABH \) và \( ACK\) có:

+) \(AB = AC\) (vì tam giác \(ABC\) cân tại \(A\))

+) \(\widehat A\) chung

\( \Rightarrow \Delta ABH = \Delta ACK\) (cạnh huyền - góc nhọn).

\( \Rightarrow AH = AK\) (hai cạnh tương ứng).

b) \(\Delta AIK \) vuông tại \(K\); \(\Delta AIH\) vuông tại \(H\).

Xét hai tam giác vuông \(AIK\) và \(AIH\) có:

+) \(AK = AH\) (chứng minh trên)

+) \(AI \) cạnh chung

\( \Rightarrow  \Delta AIK = \Delta AIH\) (cạnh huyền- cạnh góc vuông)

\( \Rightarrow \widehat{IAK}=\widehat{IAH}\) (hai góc tương ứng)

Vậy \(AI\) là tia phân giác của góc \(A\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”