Bài 68 trang 95 SGK Toán 9 tập 2

Cho ba điểm \(A, B, C\) thẳng hàng sao cho \(B\) nằm  giữa \(A\) và \(C.\) Chứng minh rằng độ dài của nửa đường tròn đường kính \(AC\) bằng tổng các độ dài của hai nửa đường tròn đường kính \(AB\) và \(BC\).

Lời giải

 

Gọi \({C_1},{C_2},{C_3}\) lần lượt là độ dài của các nửa đường tròn đường kính \(AC, AB, BC\), ta có:

\({C_1}\) \(=\dfrac {1}{2} π. AC\)              (1)

 \({C_2}\) \(=\dfrac {1}{2} π.AB\)               (2)

\({C_3}\) \(=\dfrac {1}{2} π.BC \)              (3)

Từ (1), (2), (3) ta thấy: 

 \({C_2} + {C_3} = \dfrac {1}{2}\pi (AB + BC) =\dfrac {1}{2} \pi AC=C_1\) 

Vậy \({C_1} = {C_2} + {C_3}\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”