Gọi \(x \;(km/h)\) là vận tốc ban đầu của hai xe \((x > 0).\)
Quãng đường còn lại sau khi xe thứ nhất tăng vận tốc là :
\(163 – 43 = 120 \;(km)\)
Vận tốc xe thứ nhất sau khi tăng tốc là \(1,2x \;(km/h).\)
Thời gian xe thứ nhất đi hết quãng đường còn lại là \(\dfrac{{120}}{{1,2x}}\) (giờ).
Thời gian xe thứ hai đi hết quãng đường còn lại là \(\dfrac{{120}}{x}\) (giờ).
Vì xe thứ nhất đến sớm hơn xe thứ hai \(40\) phút hay \(\displaystyle {2 \over 3}\) giờ nên ta có phương trình:
\(\eqalign{
& {{120} \over x} - {{120} \over {1,2x}} = {2 \over 3} \cr
& \Leftrightarrow {{120} \over x} - {{100} \over x} = {2 \over 3} \cr
& \Leftrightarrow {{360} \over {3x}} - {{300} \over {3x}} = {{2x} \over {3x}} \cr
& \Rightarrow 360 - 300 = 2x \cr
& \Leftrightarrow 2x = 60 \cr} \)
\(\;\; \Leftrightarrow x = 30\) (thỏa mãn điều kiện)
Vậy vận tốc ban đầu của hai xe là \(30 km/h.\)