Ta có: \({V_{S.A'B'C'D'}} = {V_{S.A'B'C'}} + {V_{S.A'C'D'}}\)
\(\begin{array}{l}\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}\\ \Rightarrow {V_{S.A'B'C'}} = \frac{1}{8}{V_{S.ABC}} = \frac{1}{8}.\frac{1}{2}{V_{S.ABCD}} = \frac{1}{{16}}{V_{S.ABCD}}\end{array}\)
\(\begin{array}{l}\frac{{{V_{S.A'C'D'}}}}{{{V_{S.ACD}}}} = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}}.\frac{{SD'}}{{SD}} = \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}\\ \Rightarrow {V_{S.A'C'D'}} = \frac{1}{8}{V_{S.ACD}} = \frac{1}{8}.\frac{1}{2}{V_{S.ABCD}} = \frac{1}{{16}}{V_{S.ABCD}}\end{array}\)
\( \Rightarrow {V_{S.A'B'C'D'}} = {V_{S.A'B'C'}} + {V_{S.A'C'D'}} \) \(= \frac{1}{{16}}{V_{S.ABCD}} + \frac{1}{{16}}{V_{S.ABCD}} = \frac{1}{8}{V_{S.ABCD}}\)
Chọn (C).
Chú ý và sai lầm: KHÔNG ĐƯỢC sử dụng công thức trên như sau: \(\frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABCD}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}\frac{{SC'}}{{SC}}.\frac{{SD'}}{{SD}} = \frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{{16}}\), đây là công thức SAI.