a) Chứng minh \(I, K\) là hai điểm chung của \((BIC)\) và \((AKD)\)
\(I\in AD\Rightarrow I\in(KAD)\) \(\Rightarrow I\in(KAD)\cap (IBC)\), \(K\in BC\Rightarrow K\in(BIC)\)
\(\Rightarrow K\in(KAD)\cap (IBC)\),
Vậy \(KI=(KAD)\cap (IBC)\)
b) Trong \((ACD)\) gọi \(E = CI ∩ DN\Rightarrow E\in (IBC)\cap (DMN)\)
Trong \((ABD)\) gọi \(F = BI ∩ DM\Rightarrow F\in (IBC)\cap (DMN)\).
Vậy \(EF=(IBC)\cap (DMN)\)