Bài 7 trang 77 SGK Đại số và Giải tích 11

Gieo một con xúc sắc ba lần. Tính xác suất sao cho mặt sáu chấm xuất hiện ít nhất một lần.

Lời giải

Ta có:

\(\eqalign{
& \Omega = \left\{ {{\rm{\{ j,j,k\} }}|1 \le i,j,k \le 6} \right\} \cr
& \Rightarrow n(\Omega ) = {6^3} = 216 \cr} \)

Gọi \(A\) là biến cố: “Mặt sáu chấm xuất hiện ít nhất một lần”

Suy ra biến cố đối là \(\overline A\): “Không lần nào xuất hiện mặt sáu chấm”.

Lần gieo thứ nhất: số lần không  xuất hiện mặt sáu chấm là \(5\) (lần)

Lần gieo thứ hai và thứ ba: tương tự có \(5\) lần không xuất hiện mặt sáu chấm

Suy ra: \(n(\overline A ) = {5^3} = 125 \Rightarrow P(\bar A) = {{n(\bar A)} \over {n(\Omega )}} = {{125} \over {216}}\)

Do đó:\(P(A) = 1 - P(\bar A) = 1 - {{125} \over {216}} = {{91} \over {216}} \approx  0,4213\).

 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”