Ta có: \(\overrightarrow {{n_\beta }} = \left( {2; - 1;\;1} \right);\;\;\overrightarrow {AB} = \left( {4;\;2;\;2} \right).\)
Theo đề bài ta có: \( (\alpha) \bot (\beta) \Rightarrow \overrightarrow {{n_\alpha }} \bot \overrightarrow {{n_\beta }} .\)
Mặt phẳng \( (\alpha)\) đi qua hai điểm \(A,\, \, B\) thì: \(\overrightarrow {{n_\alpha }} \bot \overrightarrow {{AB }} .\)
\( \Rightarrow \overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{n_\beta }} ,\;\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\2&2\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&2\\2&4\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\4&2\end{array}} \right|} \right) \\= \left( { - 4;0;\;8} \right) = - 4\left( {1;\;0;\;-2} \right). \)
Mặt phẳng \((\alpha)\) đi qua \(A(1;\, 0;\,1)\) và nhận vecto \( \overrightarrow {{n_\alpha }} =\left( {1;\;0;\;-2} \right)\) làm VTPT có phương trình: \(x-1-2(z-1)=0 \)
\(\Leftrightarrow x-2z+1=0.\)