Bài 7 trang 92 SGK Hình học 11

Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AC\) và \(BD\) của tứ diện \(ABCD\). Gọi \(I\) là trung điểm của đoạn thẳng \(MN\) và \(P\) là một điểm bất kì trong không gian. Chứng minh rằng: 

a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0};\)

b) \(\overrightarrow{PI}=\dfrac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)

Lời giải

a) \(\overrightarrow{IA}+\overrightarrow{IC}=2\overrightarrow{IM},\) (Vì M là trung điểm của AC)

\(\overrightarrow{IB}+\overrightarrow{ID}=2\overrightarrow{IN}.\) (Vì N là trung điểm của BD)

Cộng từng vế ta được:

\(\overrightarrow {IA}  + \overrightarrow {IC}  + \overrightarrow {IB}  + \overrightarrow {ID}  \) \(= 2\left( {\overrightarrow {IM}  + \overrightarrow {IN} } \right) = \overrightarrow 0 \)

b)