Trong các tam giác dưới đây, những cặp tam giác nào đồng dạng với nhau ? Hãy giải thích (h.41)
Ở hình 42 cho biết \(AB = 3cm\); \(AC = 4,5cm\) và \(\widehat {ABD} = \widehat {BCA}\)
a) Trong hình vẽ này có bao nhiêu tam giác ? Có cặp tam giác nào đồng dạng với nhau không ?
b) Hãy tính các độ dài \(x\) và \(y\) (\(AD = x, DC = y\)).
c) Cho biết thêm \(BD\) là tia phân giác của góc \(B\). Hãy tính độ dài các đoạn thẳng \(BC\) và \(BD\).
Chứng minh rằng nếu tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\) thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng \(k\).
Tính độ dài \(x\) của đoạn thẳng \(BD\) trong hình 43 (Làm tròn đến chữ thập phân thứ nhất), biết rằng \(ABCD\) là hình thang (\(AB // CD\)); \(AB= 12,5cm; CD= 28,5cm\)
\(\widehat{DAB} = \widehat{DBC}\).
Hình 44 cho biết \(\widehat{EBA} = \widehat{BDC}\).
a) Trong hình vẽ, có bao nhiêu tam giác vuông? Hãy kể tên các tam giác đó.
b) Cho biết \(AE = 10cm, AB = 15cm, BC = 12cm\). Hãy tính độ dài các đoạn thẳng \(CD, BE, BD\) và \(ED\) (làm tròn đến chữ số thập phân thứ nhất).
c) So sánh diện tích tam giác \(BDE\) với tổng diện tích hai tam giác \(AEB\) và \(BCD\).
Cho hình thang \(ABCD (AB//CD)\). Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).
a) Chứng minh rằng \(OA.OD = OB.OC\).
b) Đường thẳng qua \(O\) vuông góc với \(AB\) và \(CD\) theo thứ tự tại \(H\) và \(K\).
Chứng minh rằng \(\dfrac{OH}{OK} = \dfrac{AB}{CD}\)
Cho tam giác \(ABC\), trong đó \(AB = 15cm, AC = 20cm\). Trên hai cạnh \(AB\) và \(AC\) lần lượt lấy điểm \(D\) và \(E\) sao cho \(AD = 8cm, AE = 6cm\). Hai tam giác \(ABC\) và \(ADE\) có đồng dạng với nhau không? Vì sao?
So sánh các trường hợp đồng dạng của tam giác với các trường hợp bằng nhau của tam giác (nêu lên những điểm giống nhau và khác nhau).
Cho hình bình hành \(ABCD\) (h46) có độ dài các cạnh \(AB = 12cm, BC = 7cm.\) Trên cạnh \(AB\) lấy một điểm \(E\) sao cho \(AE = 8cm\). Đường thẳng \(DE\) cắt \(CB\) kéo dài tại \(F\),
a) Trong hình vẽ đã cho có bao nhiêu cặp tam giác đồng dạng? Hãy viết các cặp tam giác đồng dạng với nhau theo các đỉnh tương ứng.
b) Tính độ dài đoạn \(EF\) và \(BF\), biết rằng \(DE = 10\,cm\).
Cho tam giác \(ABC\) có các cạnh \(AB= 24cm, AC = 28cm.\) Tia phân giác của góc \(A\) cắt cạnh \(BC\) tại \(D\). Gọi \(M,N\) theo thứ tự là hình chiếu của \(B\) và \(C\) trên \(AD\).
a) Tính tỉ số \(\dfrac{BM}{CN}\)
b) Chứng minh rằng \(\dfrac{AM}{AN} = \dfrac{DM}{DN}\)
Hai tam giác \(ABC\) và \(DEF\) có \(\widehat{A} = \widehat{D}, \widehat{B} = \widehat{E}\), \(AB = 8cm, BC = 10cm, DE= 6cm\). Tính độ dài các cạnh \(AC, DF\) và \(EF\), biết rằng cạnh \(AC\) dài hơn cạnh \(DF\) là \(3\,cm\).