a)
- Ta có \(M\) nằm trên đường trung trực của \(AB\) nên \(MA = MB.\)
Vì \(M\) nằm giữa đoạn \(NB\) nên:
\(NB = NM + MB\) hay \(NB = NM + MA\) (vì \(MB = MA\))
Vậy \(NB = NM + MA\)
- Trong \(ΔNMA\) có: \(NA < NM + MA\)
Vì \(NM + MA = NB\) nên \(NA < NB\) (điều phải chứng minh).
b) Nối \(N'A\) cắt \((d)\) tại \(P.\) Vì \(P\) nằm trên đường trung trực của đoạn \(AB\) nên: \(PA = PB\)
Ta có: \(N'A = N'P + PA = N'P + PB\)
Trong \(ΔN'PB\) ta có: \(N'B < N'P + PB\)
Do đó: \(N'B < N'A\) (điều phải chứng minh)
c)
- Vì \(LA < LB\) nên \(L\) không thuộc đường trung trực \(d.\)
- Từ câu b) ta suy ra với điểm \(N'\) bất kì thuộc \(PB\) thì ta có \(N'B < N'A.\) Do đó, để \(LA < LB\) thì \(L\) không thuộc \(PB.\)
- Từ câu a) ta suy ra với điểm \(N\) bất kì thuộc \(PA\) thì ta có \(NA < NB.\) Do đó, để \(LA < LB\) thì \(L\) thuộc \(PA.\)