Bài 72 trang 51 SBT toán 7 tập 2

Đề bài

Cho \(H\) là trực tâm của tam giác \(ABC\) không vuông. Tìm trực tâm của các tam giác \(HAB, HAC, HBC.\) 

Lời giải

Trong \(∆ABC\) ta có \(H\) là trực tâm nên \(AH \bot BC,BH \bot AC,CH \bot AB\) 

Trong \(∆AHB\) ta có:

\(\eqalign{
& AC \bot BH \cr 
& BC \bot AH \cr} \)

Hai đường cao kẻ từ \(A\) và \(B\) cắt nhau tại \(C.\)

Vậy \(C\) là trực tâm của  \(∆AHB.\)

Trong \(∆HAC\) ta có:

\(\eqalign{
& BA \bot CH \cr 
& CB \bot AH \cr} \)

Hai đường cao kẻ từ \(A\) và \(C\) cắt nhau tại \(B.\) Vậy \(B\) là trực tâm của \(∆HAC.\)

Trong \(∆HBC\) ta có:

\(\eqalign{
& BA \bot HC \cr 
& CA \bot BH \cr} \)

Hai đường cao kẻ từ \(B\) và \(C\) cắt nhau tại \(A.\) Vậy \(A\) là trực tâm của \(∆HBC.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”