Bài 72 trang 61 SBT toán 8 tập 2

Đề bài

Cho \(a > b\), chứng tỏ

a) \(3a + 5 > 3b + 2\) ;

b) \(2 - 4a < 3 - 4b\).

Lời giải

a) Ta có:  \(a > b \Rightarrow 3a > 3b\) (Nhân số \(3\) vào hai vế của bất đẳng thức \(a>b\))

\( \Rightarrow 3a + 5 > 3b + 5\)  (Cộng số \(5\) vào hai vế của bất đẳng thức \(3a>3b\)))    \((1)\)

Từ \(5>2 \Rightarrow 3b + 5 > 3b + 2\)      \((2)\)

Theo tính chất bắc cầu, từ \((1)\) và \((2)\) suy ra: \(3a + 5 > 3b + 2.\)

b) Ta có:

\(a > b \Rightarrow  - 4a <  - 4b\)  (Nhân số \(-4\) vào hai vế của bất đẳng thức \(a>b\))

\(\Rightarrow3 - 4a < 3 - 4b\) (Cộng số \(-3\) vào hai vế của bất đẳng thức \(-4a < -4b\)))    \((3)\)

Từ \(2 < 3 \Rightarrow 2 - 4a < 3 - 4a\)     \((4)\)

Theo tính chất bắc cầu, từ (3) và (4) suy ra: \(2 – 4a < 3 – 4b.\)